

ELM simulations for MAST-U Siobhan Smith

Engineering and Physical Sciences Research Council

Edge localized modes (ELMs)

Fig. ELMs in MAST (fast camera)

No TYPE-I ELMs in ITER

Fig. ITER

JOREK

$$\begin{split} \rho \frac{d\vec{\mathbf{v}}_{E}}{dt} &= - \nabla_{\perp} p + \vec{J} \times \vec{B} + \mu \nabla^{2} (\vec{\mathbf{v}}_{E}) \\ &+ \mu_{hyp} \nabla^{4} \vec{\mathbf{v}}_{E} & \frac{\partial \rho}{\partial t} &= - \nabla \cdot \left(\rho \left[\vec{\mathbf{v}}_{\parallel} + \vec{\mathbf{v}}_{E} \right] \right) + \nabla \cdot \left(D_{\perp} \nabla_{\perp} \rho \right) + S_{\rho} \\ \rho \frac{d\vec{\mathbf{v}}_{\parallel}}{dt} &= - \rho \vec{\mathbf{v}}_{\parallel} \cdot \nabla \vec{\mathbf{v}}_{\parallel} - \nabla_{\parallel} p + \mu \nabla^{2} \left(\vec{\mathbf{v}}_{\parallel} - V_{NBI} \right) \\ &+ \mu_{hyp} \nabla^{4} \vec{\mathbf{v}}_{\parallel} & \frac{\partial \rho}{\partial t} &= - \vec{\mathbf{v}}_{E} \cdot \nabla p - \gamma p \nabla \cdot \vec{\mathbf{v}}_{E} \\ \frac{\partial \psi}{\partial t} &= \eta \left(j - j_{A} \right) + R \left[\psi, \Phi \right] - \frac{\partial \Phi}{\partial \phi} \\ &+ \nabla \cdot \left(\kappa_{\perp} \nabla_{\perp} T + \kappa_{\parallel} \nabla_{\parallel} T \right) + \frac{2}{3R^{2}} \eta j^{2} + S_{T} \end{split}$$

Fig 1. Profiles based on old MAST pulse

FNFRGY

Fig 2. Finite element grid used in simulations

Fig 1. Evolution of the energy of the modes

Fig 2. Evolution of the pressure profile

ELM simulation

Fig 2. Evolution of the pressure profile

FUSION EPSRC Centre for Doctoral Training in the Science and Technology of **Fusion Energy**

ELM simulation

FUSION ENERGY

in the Science and Technology of

Fusion Energy

Fig 1. Flux contours for conventional (left) and Super-X (right)

Fig 2. Profile comparison for conventional (orange) and Super-X (purple)

Super-X comparison to conventional

	Conventional	Super-X
Growth rate (10 ⁴ s ⁻¹)	3.53	3.45
Particle losses in pedestal	13%	14%
Energy loss in pedestal	10%	11%
Peak heat flux inner target (MW/m²)	2.2	2.7
Peak heat flux outer target (MW/m²)	6.9	0.32

JOREK fluid neutrals model

$$\frac{\partial \rho_n}{\partial t} = \nabla \cdot \left(\vec{D}_n : \nabla \rho_n \right) + S_{\rho_n} - \left(\rho \rho_n S_{ion} - \rho^2 \alpha_{rec} \right)$$

$$\stackrel{\uparrow}{\text{Diffusive neutrals}} \qquad \stackrel{\uparrow}{\text{Injection/pumping}} \qquad \stackrel{\uparrow}{\text{Inisation and recombination rates}}$$

JOREK fluid neutrals model

 $D_n
abla
ho_n \cdot ec n = - \xi_{re} \
ho ec {f v}_\parallel \cdot ec n$

Fig. Plasma density (left) and neutral density (right)

Detachment with neutrals model

Fig 2. Rollover of target density flux and drop in electron temperature

Fig 1. Evolution of the plasma density (left), neutral density (center) and electron temperature (right)

Detachment with neutrals model

Fig 2. Rollover of target density flux and drop in electron temperature

Fig 1. Evolution of the plasma density (left), neutral density (center) and electron temperature (right)

ELM burn-through

EPSRC Centre for Doctoral Training in the Science and Technology of

Fusion Energy

Fig. Evolution of the plasma density (left), electron temperature (center) and neutral density (right)

ELM burn-through

EPSRC Centre for Doctoral Training in the Science and Technology of

Fusion Energy

Fig. Evolution of the plasma density (left), electron temperature (center) and neutral density (right)

Fig 1. ELM simulation MAST-U

lower heat fluxes

Fig 3. ELM burn-through

